Wednesday, April 1, 2009
Subscribe to:
Post Comments (Atom)
An exploration of an integrated architectural design process. We seek an intellectual and experiential road map - a guide - for a process that blends art, philosophy and science to create the inspired low-energy buildings of the future.
Project X outline
1. Project Thesis statement
2. Project Components
2.1.Desert Bio-fuels deliverables
2.2.Studio deliverables
2.3.Design process manual
3. Integrated Design Process
3.1. Design Strategy Goals
3.1.1. Low net-energy buildings
3.1.2. Lowest cost
3.1.3. Lowest appropriate technology approach
3.2. Design Strategy
3.2.1. Optimize building orientation and dimensions
3.2.2. Optimize passive building features
3.2.3. Utilize efficient and appropriate materials to achieve performance and aesthetic goals
3.2.4. Reduce building energy loads using appropriate means
3.2.5. Employ on-site renewable energy generation as appropriate
3.3. Project Phases (Project A and B)
3.3.1. Phase 1: Project planning and analysis
3.3.2. Phase 2: Initial energy modeling
3.3.3. Phase 3: Design conception
3.3.4. Phase 4: Data analysis
3.4. Integrated Design process
3.4.1. Programming
3.4.1.1. Algae trenches
3.4.1.2. Algae bio-reactors
3.4.1.3. Project A
3.4.1.4. Project B
3.4.1.5. Tractor shed
3.4.1.6. Refueling station
3.4.1.7. Parking
3.4.2. Site analysis
3.4.2.1. Solar 11,12
3.4.2.2. Wind 11,18
3.4.2.3. Precipitation 11,18
3.4.2.4. Temperature 11,18
3.4.2.5. Psychrometric chart
3.4.3. Study of cultural context ???
3.4.4. Regulatory analysis
3.4.4.1. Maricopa county
3.4.4.2. City of Phoenix
3.4.4.3. Applicable codes
3.4.4.4. Description of applicable zoning requirements
3.4.5. Building rating system analysis (LEED)
3.4.5.1. LEED NC 2.2 Site Selection 7
3.4.6. Big Ideas
3.4.6.1. This project seeks to acknowledge the critical nature of the sun and the potential of people to reconnect with its fundamental power
3.4.6.1.1. Building A = Solar harvester
3.4.6.1.2. Building B = Solar observatory
3.4.7. Conceptual studies
3.4.8. Energy modeling 10
3.4.9. 3D computer modeling 2
3.4.10. Lighting modeling 11,19
3.4.11. Graphic representation 12,20
3.4.12. Physical modeling 1
3.4.12.1. Lazer cutter
3.4.12.2. Materials: chipboard base, basswood models
4. Project A flow (control case)
4.1. Phase 1
4.1.1. Programming
4.1.2. Project Goal Setting
4.1.2.1. Energy-efficiency (Carbon neutrality)
4.1.2.2. Document Integrated Design Process
4.1.2.3. Functionality
4.1.2.4. Quantitative (Aesthetics)
4.1.2.5. Describe graphically a quantitative design process
4.1.2.6. Financial efficiency
4.1.3. Site analysis
4.1.3.1. Prelim building site conceptual discussion
4.1.3.2. Prelim building shape conceptual discussion 1,2,3,
4.1.4. Code analysis
4.1.4.1. Parking
4.1.4.2. Building hight restriction
4.1.4.3. Building set backs 4,5,6
4.1.5. LEED analysis
4.1.5.1. Targeting LEED points 7
4.1.6. Resource analysis
4.1.6.1. Solar
4.1.6.2. Water
4.1.6.3. Wind
4.1.6.4. Soil
4.1.7. Energy analysis
4.1.7.1. Grid
4.1.7.1.1. Electric (SRP)
4.1.7.1.2. Water (SRP)
4.1.7.1.3. Gas (Unisource)
4.1.7.2. Onsite Solar
4.1.7.2.1. PV
4.1.7.2.2. Solar Thermal
4.1.8. Budget analysis
4.1.8.1. Fixed price project
4.1.8.1.1. Cost per SQFT (See question on blog)
4.1.9. Materials analysis
4.1.9.1. CMU
4.1.9.2. Steel
4.1.9.3. Wood
4.1.9.4. Earth
4.1.9.5. Other
4.1.9.6. Glass
4.1.9.7. Concrete
4.1.9.7.1. Precast
4.1.9.7.2. PIP
4.1.9.7.3. High fly-ash content
4.2. Phase 2:
4.2.1. Energy Benchmarking 8,9
4.2.2. Initial energy model (base case) 3,15,16
4.3. Phase 3:
4.3.1. Conceptual Studies 10
4.3.2. Conceptual energy modeling 10
4.3.3. Lighting analysis 10,11
4.3.4. Aesthetic development (big idea) 2,3,12
4.3.5. Performance + Aesthetics integration 2,3,10,11,12
4.4. Phase 4:
4.4.1. Define schematic high performance building/energy model 10,11
4.4.2. Energy modeling 10,11
4.4.3. Life-cycle costing 14
4.4.4. Value analysis 14
4.4.5. End-of schematic design energy model
5. Project B flow
5.1. Phase 1
5.1.1. Programming
5.1.2. Project Goal Setting
5.1.2.1. Energy-efficiency (Carbon neutrality)
5.1.2.2. Document Integrated Design Process
5.1.2.3. Functionality
5.1.2.4. Quantitative (Aesthetics)
5.1.2.5. Describe graphically a quantitative design process
5.1.2.6. Financial efficiency
5.1.3. Site analysis 1,2,3,
5.1.4. Code analysis 4,5,6
5.1.5. LEED analysis 7
5.1.6. Resource analysis
5.1.7. Energy analysis
5.1.8. Budget analysis
5.1.9. Materials analysis
5.2. Phase 2:
5.2.1. Energy Benchmarking 8,9
5.2.2. Initial energy model (base case) 3,15,16
5.3. Phase 3:
5.3.1. Conceptual Studies 10
5.3.2. Conceptual energy modeling 10
5.3.3. Lighting analysis 10,11
5.3.4. Aesthetic development (big idea) 2,3,12
5.3.5. Performance + Aesthetics integration 2,3,10,11,12
5.4. Phase 4:
5.4.1. Define schematic high performance building/energy model 10,11
5.4.2. Energy modeling 10,11
5.4.3. Life-cycle costing 14
5.4.4. Value analysis 14
5.4.5. End-of schematic design energy model
5.5. Schematic design presentation 12,13
6. Studio review deliverables
6.1. Boards (2x 24x36) 1,2,3,12,15
6.2. Models 16
6.3. Integrated Design Process flowchart 17
6.4. Site Plan 1,2,3,12,15
6.5. Keynote presentation 20
7. Portfolio Pages
8. Develop design process manual
8.1. Develop manual graphic format
8.2. Organize content
8.3. Produce supplementary graphics
8.4. Produce descriptive text
8.5. Editing
8.6. References
8.7. Peer review
Tool Key
1. AutoCAD
2. Revit
3. SketchUp
4. ASHRAE 90.1
5. Phoenix City Code
6. International Building Code
7. LEED NC 2.2
8. EnergyStar Target Finder
9. DOE CIBECS data base
10. eQUEST
11. EcoTecht
12. Adobe CS3
13. Artlantis
14. Excel
15. Sketching
16. Physical modeling
17. Visio
18. Climate Consultant 3
19. AGi32
No comments:
Post a Comment